direct product, metabelian, supersoluble, monomial
Aliases: C3×C32⋊2Q16, C33⋊4Q16, C12.98S32, C12.30(S3×C6), C32⋊4(C3×Q16), (C3×C12).111D6, C32⋊4C8.2C6, (C3×Dic6).9S3, Dic6.2(C3×S3), (C3×Dic6).5C6, (C32×C6).23D4, C6.29(D6⋊S3), C32⋊10(C3⋊Q16), (C32×C12).6C22, (C32×Dic6).1C2, C4.10(C3×S32), C3⋊2(C3×C3⋊Q16), C6.9(C3×C3⋊D4), (C3×C6).22(C3×D4), (C3×C12).40(C2×C6), C2.5(C3×D6⋊S3), (C3×C6).84(C3⋊D4), (C3×C32⋊4C8).4C2, SmallGroup(432,423)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C32⋊2Q16
G = < a,b,c,d,e | a3=b3=c3=d8=1, e2=d4, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=ebe-1=b-1, dcd-1=c-1, ce=ec, ede-1=d-1 >
Subgroups: 304 in 110 conjugacy classes, 36 normal (16 characteristic)
C1, C2, C3, C3, C3, C4, C4, C6, C6, C6, C8, Q8, C32, C32, C32, Dic3, C12, C12, C12, Q16, C3×C6, C3×C6, C3×C6, C3⋊C8, C24, Dic6, C3×Q8, C33, C3×Dic3, C3×C12, C3×C12, C3×C12, C3⋊Q16, C3×Q16, C32×C6, C3×C3⋊C8, C32⋊4C8, C3×Dic6, C3×Dic6, Q8×C32, C32×Dic3, C32×C12, C32⋊2Q16, C3×C3⋊Q16, C3×C32⋊4C8, C32×Dic6, C3×C32⋊2Q16
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, Q16, C3×S3, C3⋊D4, C3×D4, S32, S3×C6, C3⋊Q16, C3×Q16, D6⋊S3, C3×C3⋊D4, C3×S32, C32⋊2Q16, C3×C3⋊Q16, C3×D6⋊S3, C3×C32⋊2Q16
(1 40 46)(2 33 47)(3 34 48)(4 35 41)(5 36 42)(6 37 43)(7 38 44)(8 39 45)(9 30 19)(10 31 20)(11 32 21)(12 25 22)(13 26 23)(14 27 24)(15 28 17)(16 29 18)
(1 40 46)(2 47 33)(3 34 48)(4 41 35)(5 36 42)(6 43 37)(7 38 44)(8 45 39)(9 19 30)(10 31 20)(11 21 32)(12 25 22)(13 23 26)(14 27 24)(15 17 28)(16 29 18)
(1 40 46)(2 47 33)(3 34 48)(4 41 35)(5 36 42)(6 43 37)(7 38 44)(8 45 39)(9 30 19)(10 20 31)(11 32 21)(12 22 25)(13 26 23)(14 24 27)(15 28 17)(16 18 29)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 23 5 19)(2 22 6 18)(3 21 7 17)(4 20 8 24)(9 40 13 36)(10 39 14 35)(11 38 15 34)(12 37 16 33)(25 43 29 47)(26 42 30 46)(27 41 31 45)(28 48 32 44)
G:=sub<Sym(48)| (1,40,46)(2,33,47)(3,34,48)(4,35,41)(5,36,42)(6,37,43)(7,38,44)(8,39,45)(9,30,19)(10,31,20)(11,32,21)(12,25,22)(13,26,23)(14,27,24)(15,28,17)(16,29,18), (1,40,46)(2,47,33)(3,34,48)(4,41,35)(5,36,42)(6,43,37)(7,38,44)(8,45,39)(9,19,30)(10,31,20)(11,21,32)(12,25,22)(13,23,26)(14,27,24)(15,17,28)(16,29,18), (1,40,46)(2,47,33)(3,34,48)(4,41,35)(5,36,42)(6,43,37)(7,38,44)(8,45,39)(9,30,19)(10,20,31)(11,32,21)(12,22,25)(13,26,23)(14,24,27)(15,28,17)(16,18,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23,5,19)(2,22,6,18)(3,21,7,17)(4,20,8,24)(9,40,13,36)(10,39,14,35)(11,38,15,34)(12,37,16,33)(25,43,29,47)(26,42,30,46)(27,41,31,45)(28,48,32,44)>;
G:=Group( (1,40,46)(2,33,47)(3,34,48)(4,35,41)(5,36,42)(6,37,43)(7,38,44)(8,39,45)(9,30,19)(10,31,20)(11,32,21)(12,25,22)(13,26,23)(14,27,24)(15,28,17)(16,29,18), (1,40,46)(2,47,33)(3,34,48)(4,41,35)(5,36,42)(6,43,37)(7,38,44)(8,45,39)(9,19,30)(10,31,20)(11,21,32)(12,25,22)(13,23,26)(14,27,24)(15,17,28)(16,29,18), (1,40,46)(2,47,33)(3,34,48)(4,41,35)(5,36,42)(6,43,37)(7,38,44)(8,45,39)(9,30,19)(10,20,31)(11,32,21)(12,22,25)(13,26,23)(14,24,27)(15,28,17)(16,18,29), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23,5,19)(2,22,6,18)(3,21,7,17)(4,20,8,24)(9,40,13,36)(10,39,14,35)(11,38,15,34)(12,37,16,33)(25,43,29,47)(26,42,30,46)(27,41,31,45)(28,48,32,44) );
G=PermutationGroup([[(1,40,46),(2,33,47),(3,34,48),(4,35,41),(5,36,42),(6,37,43),(7,38,44),(8,39,45),(9,30,19),(10,31,20),(11,32,21),(12,25,22),(13,26,23),(14,27,24),(15,28,17),(16,29,18)], [(1,40,46),(2,47,33),(3,34,48),(4,41,35),(5,36,42),(6,43,37),(7,38,44),(8,45,39),(9,19,30),(10,31,20),(11,21,32),(12,25,22),(13,23,26),(14,27,24),(15,17,28),(16,29,18)], [(1,40,46),(2,47,33),(3,34,48),(4,41,35),(5,36,42),(6,43,37),(7,38,44),(8,45,39),(9,30,19),(10,20,31),(11,32,21),(12,22,25),(13,26,23),(14,24,27),(15,28,17),(16,18,29)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,23,5,19),(2,22,6,18),(3,21,7,17),(4,20,8,24),(9,40,13,36),(10,39,14,35),(11,38,15,34),(12,37,16,33),(25,43,29,47),(26,42,30,46),(27,41,31,45),(28,48,32,44)]])
63 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | ··· | 3H | 3I | 3J | 3K | 4A | 4B | 4C | 6A | 6B | 6C | ··· | 6H | 6I | 6J | 6K | 8A | 8B | 12A | 12B | 12C | ··· | 12N | 12O | ··· | 12AD | 24A | 24B | 24C | 24D |
order | 1 | 2 | 3 | 3 | 3 | ··· | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 8 | 8 | 12 | 12 | 12 | ··· | 12 | 12 | ··· | 12 | 24 | 24 | 24 | 24 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 2 | 12 | 12 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 18 | 18 | 2 | 2 | 4 | ··· | 4 | 12 | ··· | 12 | 18 | 18 | 18 | 18 |
63 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | - | + | - | - | ||||||||||||||
image | C1 | C2 | C2 | C3 | C6 | C6 | S3 | D4 | D6 | Q16 | C3×S3 | C3⋊D4 | C3×D4 | S3×C6 | C3×Q16 | C3×C3⋊D4 | S32 | C3⋊Q16 | D6⋊S3 | C3×S32 | C32⋊2Q16 | C3×C3⋊Q16 | C3×D6⋊S3 | C3×C32⋊2Q16 |
kernel | C3×C32⋊2Q16 | C3×C32⋊4C8 | C32×Dic6 | C32⋊2Q16 | C32⋊4C8 | C3×Dic6 | C3×Dic6 | C32×C6 | C3×C12 | C33 | Dic6 | C3×C6 | C3×C6 | C12 | C32 | C6 | C12 | C32 | C6 | C4 | C3 | C3 | C2 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 4 | 2 | 1 | 2 | 2 | 4 | 4 | 2 | 4 | 4 | 8 | 1 | 2 | 1 | 2 | 2 | 4 | 2 | 4 |
Matrix representation of C3×C32⋊2Q16 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 64 | 0 | 0 | 0 |
0 | 0 | 0 | 64 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 0 | 1 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
22 | 0 | 0 | 0 | 0 | 0 |
0 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,64,0,0,0,0,0,0,64,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[22,0,0,0,0,0,0,10,0,0,0,0,0,0,0,72,0,0,0,0,72,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,72,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C3×C32⋊2Q16 in GAP, Magma, Sage, TeX
C_3\times C_3^2\rtimes_2Q_{16}
% in TeX
G:=Group("C3xC3^2:2Q16");
// GroupNames label
G:=SmallGroup(432,423);
// by ID
G=gap.SmallGroup(432,423);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,168,197,176,1011,514,80,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=1,e^2=d^4,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=e*b*e^-1=b^-1,d*c*d^-1=c^-1,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations